

NCDEA/Dairy Australia

Is your raw milk giving you a raw deal?

Steve Flint 24th April 2015

The quality of raw milk determines the quality of dairy products

Outline of Webinar

- Why is milk quality important
- How to define quality milk
- Sources of contamination
- Tests for milk quality
- How to improve milk quality

Why is milk quality important?

- To meet customer specifications for microbial content
- To meet sensory requirements
- To meet functionality requirements
- To reduce costs of manufacture (eg. reduce fouling)
- Maximise return for product (eg. protein and fat content)

Definition of quality milk

- Antibiotic free
- Somatic cell limits (400,000/mL EU/750,000/mL US)
- Meets microbial specifications (Tetra Pak Guidelines)

Total Bacteria Count Outcome

$\leq 300~000$	Milk of good quality
300 000 – 1 million	Risk for organoleptic problems
1 million – 5 million	Risk for organoleptic problems &Shortened shelf life stability due to stability problems
>5 million	Not suitable for UHT processing. Product not stable

10 of 24 - Clipboard

Item collected.

Other quality issues

- Feed taints
- Chemical residues
- Colostrum/blood
- Added water
- Foreign matter
- Mechanical damage

Quality Milk – key considerations

• Types of bacteria (sporeformers, enzyme producers)

- Stability of enzymes of microbial origin
 - Lipase
 - Phospholipase
 - Microbial rennet
 - Protease

Handling of milk (temperature/time)

Product defects resulting from poor quality milk

- Bitter flavours (proteases)
- Soapy flavours (lipases)
- Rancidity (lipases)
- Poor yields (fat and protein products)
- Dead vats (cheese)
- Excessive bacterial levels
- Product fouling

Lipase activity

Proteolysis and flavour compounds

Types of microorganisms in milk

Microbial type

- Gram negative psychrotrophic bacteria
- Sporeforming bacteria
- Thermoduric bacteria
- Pathogenic bacteria
- Mastitis bacteria
- Lactic acid bacteria
- Yeast and mould

Outcome/concern

- Enzyme producers sensory/fouling/yield
- Product contamination
- Survive heat treatment
- Food Safety
- Somatic cells
- Acid producers
- Acid/sensory

Raw milk survey (de Vegt 2014)

- Prevalent bacteria
 - Mycobacteriaum
 - Lactobacillus
 - Lactococcus
 - Enterococcus
 - Chryseobacterium

Raw milk survey (de Vegt 2014)

- Less prevalent bacteria
 - Staphylococcus
 - Streptococcus
 - Pseudomonas
 - Corynebacterium
 - Acinetobacter

Raw milk survey (de Vegt 2014)

- Occasionally detected bacteria
 - Rhodococcus
 - Serratia
 - Enterobacter
 - Klebsiella
 - Micrococcus
 - Bacillus cereus
 - E. coli

Sources of Contamination

- Udder infection
- External surface of udders
- Faecal Shedding
- Milking and storage equipment
- Farming Environment
- Transportation and silo storage

Tests for raw milk quality

- Antibiotic testing
- Total microbial load
 - APC
 - Bactofos
- Somatic cell counts

Raw Skim milk regression model that is divided into zones based on the production of heat resistant enzymes

Alternative microbial tests

• Methylene blue or Rezasurin reduction tests

Total spore count

• Thermoduric count

Psychrotrophic count

Other testing – Chemical/Physical

• pH

Total acidity

- Alcohol precipitation (protein stability)
- Freezing point
- Density (solid content)

Comparison between APC and TA results

APC (CFU/mL)	TA (%m/v)
(log scale)	
10 ⁴	0.1
10 ⁵	0.10-0.13
10 ⁶	0.15
>10 ⁷	0.17

Current Raw Milk Requirements

• Australia – Varies from state to state but generally requires milk to be chilled to 4° C.

International Regulations

• New Zealand - 7 °C within 3 hours from the completion of milking. Revised to be 6° C within 6 h of milking.

- USA 2 °C within 2 h of milking
- EU 8 °C within 2 h of milking

Milk temperature on farm at the point of collection

APC counts in milk – case study on one manufacturing site

Effect of storage time on APC growth in milk

Relationship between initial count and average final counts in milk stored for 48 h

Effect of delayed cooling on bacterial growth in raw milk

Delay in Cooling to 12.8°C (h)	Total Plate Counts/mL after (h)				
	0	24	48		
0	2.5×10^{2}	3.0 x 10 ³ (12)*	$2.0 \times 10^6 (8000)$		
2	2.0×10^{2}	$1.5 \times 10^4 (70)$	$2.7 \times 10^6 (13500)$		
4	2.3×10^{2}	$2.5 \times 10^4 (110)$	$1.5 \times 10^7 (75000)$		
8	1.9×10^{2}	$9.3 \times 10^4 (480)$ $4.4 \times 10^7 (23)$			
16	1.6×10^2	$1.4 \times 10^7 (87000)$	$4.0 \times 10^7 (250000)$		

^{*} The figure in parentheses gives the number of fold increase over the initial count.

Microbial Growth Phases

A=Lag Phase

B=Log/Exponential Phase

C= Stationary Phase

D= Death Phase

Lag phase for APC in raw milk at different temperatures

Effect on speed and temperature of cooling on lag phase

Storage Temperature (°C)	Slow/Rapid Cooling	Trial 1 – Lag (h)		Trial 2 - Lag (h)	
		Mean	SD	Mean	SD
2	Rapid (40 s)	12.6	0.5	14.9	0.5
2	Slow (2 h)	11.6	0.8	15.8	0.2
7	Rapid (40 s)	12.9	0.7	15.2	0.5
7	Slow (2 h)	12.2	0.9	14.5	0.3

Dairy related spoilage bacterial enzymes

- Two major bacterial enzymes in milk:-
 - Protease (Bitterness)
 - Lipase (Rancidity)
- Activity in final product

Proteolysis in raw milk

Figure 10. SDS PAGE analysis of proteins from raw milk stored at various temperatures for 48 h (1. Skim milk control; 2. Test control; 3. 1.9°C; 4. 4.9°C; 5. 7.1°C; 6. 10.2°C; 7. 15.4°C; 8. 19.2°C; 9. 25.0°C).

General background

Biofilm

- Reservoirs of bacterial enzymes
- Entrapment or secretion
- Milk tanker surfaces suitable for biofilm growth

Temperature Monitoring

Temperature monitoring

Enzymes produced by biofilm cells

- Isolates from milk tanker surfaces
 - 153 isolates
 - 52 biofilm and enzyme producers
 - 12 typed (16S DNA) for further study
- Dairy bacteria can produce proteases and lipases within biofilms - in greater amounts than planktonic cells

Material and methods

- A cocktail of bacterial strains
 - P. fluorescens C224, S. liquefaciens DC, S. aureus SF01
- Three different level of contamination
 - Slightly, Moderately and Heavily
- Initial inoculum
 - 10³, 10⁵, 10⁷ cfu/mL

Materials and Methods

20° C for 24 h

10, 20, 30, 40° C

Bacterial cell
counts on the
surfaces
(log CFU cm ⁻²)

Bacterial cell count in the milk (log CFU mL⁻¹)

Treated vessels	8.84	7.96
-----------------	------	------

Moderately contaminated trials

Treated vessels	7.41 ± 0.62^{a}	6.47 ± 0.04
11 cated vessels	/ · · · · · · · · · · · · · · · · · · ·	 -

Slightly contaminated trials

Treated vessels
$$5.61 \pm 0.21^{\text{b}}$$
 6.13 ± 0.34

< 1

Results – Slightly Contaminated

Results - Moderately Contaminated

UHT milk following enzymatic damage

Te Kunenga ki Pürehuroa

Conclusions

- Raw milk quality affects product quality
- Microbial enzymes are the main concern with poor quality milk
- Maintaining the cold chain from farm to factory is the best control measure.

Reference

 Tetra Pak Handbook – The role of raw milk quality in UHT production

http://www.tetrapak.com/about-tetra-pak/cases/how-milk-quality-affects-your-uht-dairy-products?disableMobile=1&utm_source=foodqualitynews&utm_medium=mailshotrawmilkquality&utm_campaign=processing

Questions

