Soft Ripened White Mold Cheeses

The Science and the Art

Casein

Dairy Australia Webinar 2017

Gianaclis Caldwell

Summary

- The three core cheesemaking technologies for bloomies
 - Lactic
 - Rennet
 - Stabilized
- Food Safety Reminder
- The key factors to remember during production
- Buffering review
- pH goal benchmarks
- Starter culture options
- Surface molds and yeasts
- The influence of rennet
- Moisture and pH at hooping/forming
- The role of salt
- Affinage

The Three White Mold Technologies

Lactic

- Examples: Most French soft ripened goat cheeses
- Characteristics: Firm paste,
 thin rind with some
 softening around rind.
 Crumbly. Small format

Make in Nutshell:

- Little to no rennet
- Long coagulation to low pH, about 4.4-4.6
- Wet, acidic curd drained in bags or open meshed small forms
- Bag drained curd is often reformed into wheels

The Three White Mold Technologies

- Rennet Traditional softened paste
 - Traditional
 Camembert and Brie
 - Soft, runny paste when ripe
- Make in a Nutshell:
 - Quick rennet coagulation (relatively)
 - Little to no stirring
 - Large wet curds at hooping
 - pH at dehooping<5.0

The Three White Mold Technologies

- Rennet stabilized paste
 - Exported and mass produced Camembert and Brie
 - Characteristics: Soft paste with long shelf stability.
 - Artisans can use stabilization techniques too!
- Make in a Nutshell:
 - Quick rennet coagulation
 - More stirring of curds and smaller curd size
 - Possible other stabilization techniques
 - Washing curd
 - Adding fat

Don't forget these are "High Risk" Cheeses!

- Both pasteurized and raw versions are considered high risk.
- Post contamination potential
- High surface pH sometimes 8.0!
- Keep in mind when designing production flow
- Address in food safety plans

The Keys to All Bloomies

- Buffering
 - Milk's natural buffering
 - How you manipulate it through pH developement
- Surface de-acidification raising the pH
 - How you manipulate it with yeasts
 - How you manipulate it with molds
 - How salt manipulates the yeasts and molds
- Softening of the paste
 - How the surface flora change the interior
 - How the environment helps

It's all about Buffering

- Buffer Basics
 - Compounds that have the ability to resist changes in pH (free hydrogen ions)
 - Buffering Capacity of milk
 - The only reason we can make cheese
 - The better the milk's buffering capacity the more time you have to make all cheeses

Milk's Powerful Buffering Ability

The Casein Micelle

- Caseins the major buffer in milk
- Calcium Phosphate as Colloidal Calcium Phosphate (CCP) – Insoluble
 - Pre-bound ionic calcium
 - Usually 2/3 of the total CP in milk
 - Exists in milk in greater quantity in milk than would be normal in another solution of the same pH
 - Combines with lactic acid to form calcium lactate

Comparison of Benchmarks

	Lactic	Traditional Rennet	Stabilized
pH at renneting	6.00 – 6.30	6.10-6.30	6.40-6.55
pH at unmolding	<u><</u> 4.45	4.65-4.85	4.95-5.20
Ca/FFDM (mineralization)	<0.4%	0.8-1.7%	1.8-2.3%
Best Before	2-9 weeks	6-10 weeks	7-15 weeks

Starter Culture Choices

- Mesophiles
 - Produces more acid by hooping time
 - Less minerals in curd
 - Less buffering
 - Aroma
- Thermophiles TA 50
 - Keeps the pH higher at hooping
 - More minerals in curd
 - More buffering
 - Exopolysaccharides
 - texture

Comparison of Cultures and Rennet Used

	Lactic	Traditional Rennet	Stabilized
Starter	Mesophilic	Mesophilic and Thermophilic	Thermophilic
Rennet (ml/100L, 26 gal)	4-12	16-25	25-40
Geotrichum	++	+	+
P. camemberti	+	++	+

Yeast's Role

- Deacidification
 - Vary in rate of surface deacidification
 - Vary on salt tolerance
- Gas Production Inside
 - Vary on whether gas is produced
 - Eyes inside are helpful for many traditional bloomy types
- Fat and Protein breakdown
 - Vary on ability to help soften the cheese
 - Vary on ability to produce other flavors

Comparison of Yeast Options

	Ferments on surface	Ferments inside plus gas	Neutralizing surface pH
KL- Kluyveromyces lactis	Yes	Yes	+
CUM – Candida utilis mesophile	Yes	Yes, glucose only	+++
DH – Debaryomyces hansenii	Yes	No	++

Geotrichum's Role

- Further de-acidification of rind
- Aroma
- Rind thickness

Comparison of Geotrichum Options

	Appearance	Growth Rate	Salt tolerance	Flavor	Lipolysis Proteolysis
Geo 15	Yeast like, cream	++	+	+	4x < PC
Geo 13	Intermediate	+	+	+	и
Geo 17	Mold like, white	++	+	+	u

Penicillium camemberti's Role

- Rind texture
 - Choice of PC influences texture
- Rind thickness
 - Each PC grows at a different thickness and height
- Rind aroma and paste flavor
 - Different aroma compounds produced
 - Different flavor compounds produced
- Paste texture
 - Draws lactate from paste to deacidify and allow for softening

Comparison of PC (Choozit 10d)

		Whiteness	Growth Rate	Thickness	Proteolysis	Lipolysis	Other
	ABL						
A STATE OF THE	HP 6	+++	+++	++	+++	++	
	Neige	++	+	++++	+++	+++	
	PC VB	++	+	++++	++++	+++	
	SAM 3	++	+	+++	++	++	Anti mucor

Rates of Dosing PC to Geo

		CHEESE	MIXED SOFT CHEESE	STABILIZED SOFT CHEESE	
Yeasts	CHOOZIT* DH	I dose* for 1000L of milk			
	CHOOZIT* KL 71 - CUM	2 doses for 1000L of milk			
Geotrichum candidum	CHOOZIT* GEO 13 - 15 - 17	1-2 dose(s)** for 2 doses* for 1000L of milk			
Penicillium camemberti	CHOOZIT* PC 02 - 12 - 22 - HP 6 - NEIGE - SAM 3 - VS - VB	2 to 5 doses*** for 1000L of milk			

Ratio of Dosing PC to Geo

How Rennet Affects Bloomies

- More rennet
 - More stirring
 - More loss of whey early
 - More minerals retained
- During aging
 - Small role in proteolysis
- The Type of Rennet

Resolubilization Review

- Several key pH/acid goals MUST be achieved if a soft texture is desired by the end of aging
 - High moisture at drainage means....
 - Loss of minerals during draining which means...
 - Loss of buffering capacity of curd
 - Low pH of 4.7-ish means...
 - Presence of lots of lactate (lactic acid) to feed yeasts first then white molds which means...
 - Consumption of lactic acid by white mold raises the pH by both acid consumption and ammonia production which means...
 - Casein returns to the point (above about 5.1) when it "likes" water again

Moisture at Hooping - Lactic

Lactic

- Tremendous loss of minerals before hooping
- Low buffering capacity
- Low pH
- High lactate content
- Crumbly texture

Moisture at Hooping – Rennet Trad.

Rennet Traditional

- Wet curd at hooping
 loss of minerals
 during draining = loss
 of buffering capacity
- Slightly higher pH = faster time to surface flora development
- Texture can resolubilize

Moisture at Hooping – Stabilized

- Curd drier at hooping, higher pH
 - Higher buffering capacity
 - Sweeter curd
 - Faster rind growth
 - Firmer paste
 - Longer aging

The Role of Salt in Bloomies

- Drainage
 - Helps draw moisture from curd
- Rind Growth
 - Influences PC vs Geo
 - Limits other molds
- Flavor
- Preservation
- Goal Salt Amounts
 - -1.7 1.8% of weight of curd
 - Or brine 30 60 min.

Aging Needs

- Drying phase
 - Yeasts, Geo
 - 24-48 hours
 - 54-64 F
 - Room humidity about80%
 - Small fan helpful

Aging Needs

- Aging phase I
 - -45-60F
 - **-85-95%** RH
 - Turn daily
 - Lots of air exchange

Aging Needs

- Aging phase II
 - Wrap when mold growth is even and not too thick
 - Continue to age at 45-55F
 - Same humidity

Surface Invaders

- Historical perspective is it contaminated or is it traditional?
- Sources of unwanted fungi:
 - Dairy farm
 - Make room
 - Aging room
- Petri-film yeast and mold plates to monitor milk
- Worker cleanliness
 - Hair
 - Street clothes
- Surface cleaning
- Air cleaning
 - Ozone
 - UV

Sources

J Food Prot. 2003 Dec;66(12):2355-8. **Use of ozone to reduce molds in a cheese ripening room.**Serra R¹, Abrunhosa L, Kozakiewicz Z, Venâncio A, Lima N.

Microorganisms 2017, 5(3), 42; doi:10.3390/microorganisms5030042 Review

Diversity and Control of Spoilage Fungi in Dairy Products: An Update Lucille Garnier 1,2Orcid, Florence Valence 2 and Jérôme Mounier 1,*

- gianaclis@gmail.com
- www.gianacliscaldwell.com
- www.pholiafarm.com
- Facebook, YouTube

