What’s Exciting in the Way of Whey?

Don Otter
Center for Dairy Research
University of Wisconsin-Madison

A Dairy Australia/ National Centre for Dairy Education webinar

Center for Dairy Research “Solution Based Research Backed by Experience, Passion and Tradition”
New Zealand Dairy Inc.
Kiwi Entrepreneur
(Donald Duck McOtter)

- Bought 10,000 hectares ($200m)
- Milking 20,000 cows
- 1,000,000 L/day milk
- Built cheese plant
- 100,000 kg/day cheese ($0.15m)
- 900,000 L/day whey (TS 6.5%)
Kiwi Entrepreneur
(Donald Duck McOtter)

- Bought 10,000 hectares ($200m)
- Milking 20,000 cows
- 1,000,000 L/day milk
- Built cheese plant
- 100,000 kg/day cheese ($0.15m)
- 900,000 L/day whey (TS 6.5%)
- Plonked a bag of money down

Make me a billion dollars with the whey!
How to Make a Billion!!!

Nonfat Dry Whey $0.13/kg = $14,625 (187 yrs)

Protein (0.8 %wt/wt) = 3273 kg

<table>
<thead>
<tr>
<th>Protein (Sigma)</th>
<th>Percent (%)</th>
<th>Amount (kg)</th>
<th>Price ($/g)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Lactoglobulin</td>
<td>51</td>
<td>1669</td>
<td>100</td>
<td>$167,000,000</td>
</tr>
<tr>
<td>α-Lactalbumin</td>
<td>19</td>
<td>622</td>
<td>500</td>
<td>$311,000,000</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>1</td>
<td>32.7</td>
<td>4000</td>
<td>$131,000,000</td>
</tr>
<tr>
<td>Lactoperoxidase</td>
<td>0.25</td>
<td>8.2</td>
<td>12000</td>
<td>$98,000,000</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.15</td>
<td>4.9</td>
<td>8,000,000</td>
<td>$39,300,000,000</td>
</tr>
</tbody>
</table>
How to Make a Billion!!!

Nonfat Dry Whey $0.13/kg = $14,625 (187 yrs)

Protein (0.8 %wt/wt) = 3273 kg

<table>
<thead>
<tr>
<th>Protein (Sigma)</th>
<th>Percent (%)</th>
<th>Amount (kg)</th>
<th>Price ($/g)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Lactoglobulin</td>
<td>51</td>
<td>1669</td>
<td>100</td>
<td>$167,000,000</td>
</tr>
<tr>
<td>α-Lactalbumin</td>
<td>19</td>
<td>622</td>
<td>500</td>
<td>$311,000,000</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>1</td>
<td>32.7</td>
<td>4000</td>
<td>$131,000,000</td>
</tr>
<tr>
<td>Lactoperoxidase</td>
<td>0.25</td>
<td>8.2</td>
<td>12000</td>
<td>$98,000,000</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>0.15</td>
<td>4.9</td>
<td>8,000,000</td>
<td>$39,300,000,000</td>
</tr>
</tbody>
</table>

BUT – you need a market/buyer
Product Mix

- **Commodities**
 - High volume
 - Low value
 - Low production costs

- **Value-added**
 - Low volume
 - High value
 - High production costs

- **Fertilizer**
- **Fuel**
- **Feed**
- **Food**
Mozzarella Cheese and Byproducts

- Raw milk 100 lbs
 - Cream 4.5 lbs
 - Standardized milk 95.5 lbs
 - Cheese 9.3 lbs
 - Whey 86.2 lbs
 - Whey cream 0.7 lbs
 - Separated whey 85.5 lbs
 - Water 80 lbs
 - Whey powder 5.5 lb dry
 - Permeate 66.0 lb liquid
 - 34WPC 19.5 lb liquid
 - 1.9 lb dry
 - Whey powder 5.5 lb dry
 - Permeate 66.0 lb liquid
 - 3.8 lb dry
Why Process the Whey?

Distribution of Milk Components Between Cheese and Whey

- Water
- Total solids
- Casein
- Whey protein
- Fat
- Lactose
- Calcium

50% of the solids are in the whey

Percentage of Total Solids
Types of Whey

Sweet
- Whey - insignificant conversion of lactose to lactic acid
- < 0.16% titratable acidity,
- Contains glycomacropeptide (GMP)
- Examples: Cheddar, Mozzarella

Acid
- Whey - significant lactose converted to lactic acid, or from curd formation by direct milk acidification
- > 0.35% titratable acidity
- No GMP unless rennet is used
- Examples: Cottage, ricotta, cream
Types of Whey (continued)

- **Fermented**
 - Sweet whey that has a lower pH due to action of cheese starter culture
 - Typically undesired
 - Calcium content of sweet whey

- **Salty**
 - Whey released from salted cheese during pressing
 - Contains high levels of salt
 - Use/disposal problem
Composition of Milk and Whey

Percentage of total solids (%)

- NFDM
- Whole milk
- Sweet whey
- Acid whey

Composition:
- Fat
- Minerals
- Protein
- Lactose
What Else is in Whey?

- Oligosaccharides
- Enzymes (proteins)
 - Lactoperoxidase
 - Lysozyme
- Growth factors
 - IGF-1
 - TGF-β
- Vitamins (water soluble)
- Etc…
Options for the Use of Whey

Individual proteins
- Lactoferrin
- GMP
Oligosaccharides
Whey protein isolates
- Lactose
Whey protein concentrates
- WPC 80
- WPC 34
Whole whey
Feed
Land application
Nutritional Aspects of Whey Proteins

- Contain all of the essential amino acids
- High PDCAAS (Protein Digestibility Corrected Amino Acid Score)
- High in branched chain amino acids (leucine, isoleucine and valine)
- Helps build and maintain muscle
- Infant formula (hydrolysates)
- Oligosaccharides
- GMP – no phenylalanine – phenylketonuria
Functional Components

- **Protein** – most important component
 - Gelation, solubility, water binding, emulsification, nutrition

- **Minerals**
 - Calcium

- **Lactose**
 - Browning, slight sweetness

Processes used to produce the ingredient may alter functional properties
Functional Properties of Whey Proteins

- **Solubility**
 - Undenatured form soluble over wide pH range
 - Not heat stable

- **Emulsification**
 - Whey proteins have both hydrophilic and hydrophobic areas
Functional Properties of Whey Proteins

Whipping and foaming
 – Related to emulsification

Foaming ability

Foam stability: collapse over time
Water Binding/Gelling

- Whey proteins have low viscosity compared to other proteins
- Viscosity increases with heat treatment
- Can form gels at higher protein concentrations
Functional Properties of Lactose

- Absorbs and enhances flavors
- Absorbs pigments
- Browning - bakery and confections
- Tableting agent
- Fermentation substrate
Some Processing Options for Whey

- Concentrate
- Fractionate
- Convert
Some Processing Options for Whey

- Concentrate
- Fractionate
- Convert
 - Organic matter
 - Fermentation
 - Single cell protein
 - Chemicals
 - Chemical conversion/Fermentation
 - Ethanol Methanol Lactitol
 - Fuels
 - Chemical conversion/Fermentation
 - Methane Ethanol
Some Processing Options for Whey

Whey

Concentrate

Fractionate

Convert

Reverse osmosis
Nanofiltration

Evaporation

Drying

Condensed whey

Whey powder
Some Processing Options for Whey

- **Whey**
 - **Concentrate**
 - **Protein**
 - Ultrafiltration
 - Whey protein concentrate
 - Microfiltration
 - Enriched protein fractions
 - Chromatography/Ion exchange
 - Individual proteins
 - **Fractionate**
 - **Lactose**
 - Crystallization
 - Dairy minerals
 - Precipitation/Separation
 - Partially demineralized whey
 - Ion exchange/Electrodialysis
 - Demineralized whey
 - **Convert**
 - **Minerals**
 - Nanofiltration
 - Separation
Whey Products

- Condensed/dried whey
 - sweet, acid
- Demineralized whey
 - 25, 50 and 90%
- Reduced lactose whey (mineral-concentrated)
- Whey protein concentrate
 - 34, 50, 60, 75 and 80%
- Whey protein isolate
- Lactose hydrolyze whey
- Protein hydrolyzed whey

- Lactose
 - industrial, food and pharmaceutical
- Lactose derivatives
 - lactitol, lactulose and galacto-oligosaccharides
- Individual proteins
 - lactoferrin, lactoperoxidase and glycomacropeptide
- Dairy minerals
- Permeate
What else can we do?

Composition of Milk

Robert Jenness

Milk is secreted by all species of mammals to supply nutrition and immunological protection to the young. It performs these functions with a large array of distinctive compounds. Interspecies differences in the quantitative composition of milk (Jenness and Sloan 1970) probably reflect differences in the metabolic processes of the lactating mother and in the nutritive requirements of the suckling young.

In the United States, milk is defined for commercial purposes as the lacteal secretion, practically free from colostrum, obtained by the complete milking of one or more healthy cows, which contains not less than 8.25% of milk-solids-not-fat and not less than 3.25% milk fat. Minimal standards in the various states may vary from 8.0 to 8.5% for milk-solids-not-fat and from 3.0 to 3.8% for milk fat (U.S. Dept. Agr. 1980).

CONSTITUENTS OF MILK

Milk consists of water, lipids, carbohydrates, proteins, salts, and a long list of miscellaneous constituents. It may contain as many as 10^9 different kinds of molecules. Refinement of qualitative and quantitative techniques continues to add new molecular species to the list. The constituents fall into four categories:

N. P. Wong et al. (eds.), Fundamentals of Dairy Chemistry
© Van Nostrand Reinhold Company Inc. 1988
1 million ‘bits’ but what products…

Protein
- Over 100 proteins/enzymes
- Lactoferrin – IEX, whey stream
- MFGM
 - Anti-inflammatory properties
 - Membrane proteins and phospholipids
 - Multiple health benefits for infants
- Proteose peptones
- CMP (GMP) – phenylketonuria (1:10,000)
- Hydrolysates/Peptides - bioactivity
Sugars and NPN

Sugars

- Lactose
- GOS
 - IF
 - Prebiotic
- Oligosaccharides
 - IF
 - EFSA, safe, efficacy?
- Lactose laurel ester – antimicrobial

NPN

- Urea (~50%), ammonia
- α-Amino acid, peptides
- Creatine, creatinine
- Uric acid, orotic acid, hippuric acid
- Growth factors
 - IGF, TGF, PDGF, FGF
Minerals

- Calcium
 - Bioavailability
 - High adsorption rate
- Phosphate
- Alamin 995, 996, 997
- Capolac

What’s new?

Salt replacer

<table>
<thead>
<tr>
<th>Component</th>
<th>Alamin996 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>2.88</td>
</tr>
<tr>
<td>Ash</td>
<td>79.63</td>
</tr>
<tr>
<td>Protein</td>
<td>6.55</td>
</tr>
<tr>
<td>Fat</td>
<td>0.69</td>
</tr>
<tr>
<td>Lactose</td>
<td>2.92</td>
</tr>
<tr>
<td>Others</td>
<td>7.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Alamin996 (mg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>431.01</td>
</tr>
<tr>
<td>K</td>
<td>248.41</td>
</tr>
<tr>
<td>Ca</td>
<td>29.25</td>
</tr>
<tr>
<td>Mg</td>
<td>1127.99</td>
</tr>
<tr>
<td>P</td>
<td>15.79</td>
</tr>
<tr>
<td>Cl</td>
<td>151.46</td>
</tr>
</tbody>
</table>
Arla Foods Ingredients products

- α-Lactalbumin
- Casein glycomacropeptide
- Functional Milk Proteins
- Hydrolysates
- Lactose
- Milk minerals
- Osteopontin
- Phospholipids
- Phospholipids & MFGM
- Permeate
- Whey protein concentrate
- Whey protein isolate
High Protein Products

- High protein aseptic milk
- Smoothies (with fruit)
- Protein
 - Bars
 - Gels
 - Powder
 - Shakes
- Yogurt – drinkable,
- Kefir
- Whey cheese
- Ice cream – high protein without hardening
- Whey cheese, ricotta
Whey Bioactivity

- Muscle mass/recovery
- Weight management/loss
- Enhance the immune system
- Food intake/satiety
- Lower blood pressure
- Anti-microbial, anti-viral
- Peptides/hydrolysates
- Sarcopenia

Clinical Studies – story to tell

Red Whey is a recovery drink (tart cherry juice and whey protein beverage) that is made in Wisconsin, with Wisconsin products, for Wisconsinites, namely UW-Madison student-athletes and was developed by the Wisconsin Center for Dairy Research (CDR).
Functional Ingredients

- Functional
 - Foaming
 - Gelling
 - Emulsification
 - Water binding
 - Solubility
 - Microstructures
 - Texturizers

- Altered functionality
 - High intensity ultrasound
 - Pulsed electric field
 - HPP
 - Gas plasma processing
 - Conjugation/cross-linking
 - Individual whey proteins e.g. PP3

New Product Potential
Plasma Whey Powder

After over four years of development and with five patents pending, Plasma Nutrition has created a brand new state of protein powder. Unlike the three ordinary types of protein powders traditionally available (isolate, concentrate and hydrolyzed), Plasma Nutrition has created an unprecedented fourth state of protein powder through the application of gas plasma (similar to the surface of the sun) - MOTO Protein Powder. Using the latest research and a patent pending processing application, we offer our customers unparalleled advancements through:

OVER 5 PATENTS PENDING

We have over 5 patents pending on our method of using plasma to make Whey Protein better. Only product in the world to increase Protein solubility by 71%, hydrophobicity by 27% and surface area by 26%.

180% GREATER MUSCLE GAIN AND 96% STRENGTH GAIN

A study conducted by Baylor University showed that a blend of whey isolate and casein allowed participants to gain nearly 4 more pounds of lean muscle mass compared to 100% whey alone.

71% INCREASE IN SOLUBILITY

We are the only protein powder that is able to increase solubility by 71%. This improves mixability and maximizes bioavailability.

27% BETTER HYDROPHOBICITY AND SURFACE AREA

We use atmospheric plasma to increase absorption and improve digestibility by increasing exposure to digestive enzymes.

http://www.plasmanutrition.com/
Encapsulation by Whey Proteins

- Curcumin WPI microencapsulation J Food Eng 169 (2016) 189-195
- Polyphenol WPI meso-structures Food Funct., (2016), 7, 1306-1318
- Electrospinning WPC Innovative Food Science and Emerging Technologies 13 (2012) 200–206

- Vitamins
- Flavor compounds
- Minerals
- Drugs
- Oils

G.M. Tavares et al. / Trends in Food Science & Technology 37 (2014) 5-20
WPI Biofilms

- Edible antimicrobial films from WPI, hydrolysed WPI and glycerol
 J Food Sci., 2013, 78(4), M560-M566

- Activate-at-home WPI and lysozyme for smoked salmon
 Food Hydrocolloids 60 (2016) 170e178

- Moisture-permeable cheese membranes to pack and preserve cheeses?
 J Sci Food Agric 2016; 96: 2328–2336
Oligosaccharides

- Mimic human breast milk OS in infant formula
- Purification by filtration procedures
- Complexity
- Efficacy?
- Hilmar
- GOS

Glycobiology vol. 22 no. 9 pp. 1147–1162, 2012
Whey/Permeate Fermentation

- Bacterial and yeast
- Algae
- Biofuels
- Cost effective

- Bioactive compounds
- Exopolysaccharides
- Malleable protein matrix decreases TAG in metabolic syndrome patients

British Journal of Nutrition (2012), 107, 1694–1706
Weight Management

- Both putting weight on and reducing weight
- Higher protein diet promotes greater lean mass gain and fat mass loss

Age affects
- Satiety
- Palatability

Lactose products

- Current products -
 - Alcohol
- GOS
- Hetero-oligosaccharides
- Conversion products
- Green plastics
- Conjugates
- LP

- Good
- Bad
- Nutrient value
- Functionality

Oddly enough, the only thing Walter could tolerate was lactose.
Commercial lactose derivatives

- Galactooligosaccharides (GOS)
- Lactitol – artificial sweetener – E966
- Lactulose - laxative
- Lactosucrose
- Lactobionic acid
β-Linked oligosaccharides with a degree of polymerization (DP) of 2 to 9

Composed of galactose and may contain one glucose unit, typically at the reducing end

Includes disaccharides though lactose is generally excluded because it is digestible in human infants

Produced by β-galactosidase (β-Gal)-catalysed transgalactosylation with lactose as glycosyl-acceptor and -donor
Low caloric and non-cariogenic
Prebiotic properties
Prevent attachment of some pathogens to intestinal cells
Binding of toxins and/or pathogens
Based on human milk oligosaccharides (HMO)
Modulate infant microbiota
Stimulate the immune systems
Used in infant formula to mimic functions of HMO
Prebiotic health benefits are increasingly thought to relate to the function rather than the composition of intestinal microbiota.

Lactose and GOS are metabolized to short chain fatty acids, which are major mediators of physiological benefits of dietary fibre and non-digestible oligosaccharides.

Health claims for prebiotic carbohydrates are not approved in the U.S., Canada, or the EU.
Hetero-oligosaccharides

- Structural and/or functional similarity to human milk oligosaccharides
- Transglycosylation of lactose with enzymes other than β-Gal
- Sialidase, glucansucrase, fructansucrase or α-fucosidase
- N-Acetylg glucosaminidases can transfer a GlcNAc residue onto lactose, to build the core structure of HMOs
Hetero-oligosaccharides

- Prebiotic effects
- Fermentation to short-chain fatty acids by intestinal microbiota confers health benefits
- Other potent biological activities
- Direct immunomodulation
- Prevent binding of bacterial toxins or adhesins (*in vivo* studies)
Lactobionic acid

C1 oxidation of lactose

Skin care, pharmaceuticals, sport drinks, detergents

Table 3
Some options for lactose utilisation

<table>
<thead>
<tr>
<th>Product</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Foods</td>
</tr>
<tr>
<td>Acetone</td>
<td>Various</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Foods, energy</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Various</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Medical</td>
</tr>
<tr>
<td>Butanol</td>
<td>Various</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Foods</td>
</tr>
<tr>
<td>Food oils</td>
<td>Animal foods</td>
</tr>
<tr>
<td>Fuel gas</td>
<td>Energy</td>
</tr>
<tr>
<td>Galactaric acid</td>
<td>Various</td>
</tr>
<tr>
<td>Galatonic acid</td>
<td>Various</td>
</tr>
<tr>
<td>Gibberellic acid</td>
<td>Plant hormones</td>
</tr>
<tr>
<td>Glucaric acid</td>
<td>Various</td>
</tr>
<tr>
<td>Gluconic acid</td>
<td>Various</td>
</tr>
<tr>
<td>Hydrolysed lactose</td>
<td>Sweetener, lactose malabsorbers</td>
</tr>
<tr>
<td>Itaconic acid</td>
<td>Various</td>
</tr>
<tr>
<td>Lactase</td>
<td>Enzyme applications</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>Foods</td>
</tr>
<tr>
<td>Lactic polymers</td>
<td>Biodegradable plastics, prosthetics</td>
</tr>
<tr>
<td>Lactitol</td>
<td>Non-nutritional sweetener</td>
</tr>
<tr>
<td>Lactobionic acid</td>
<td>Chelating</td>
</tr>
<tr>
<td>Lactose crystals</td>
<td>Food, tablet binder</td>
</tr>
<tr>
<td>Lactose foams</td>
<td>Insulation</td>
</tr>
<tr>
<td>Lactose polymers</td>
<td>Surfactants</td>
</tr>
<tr>
<td>Lactosyl urea</td>
<td>Ruminant feeding</td>
</tr>
<tr>
<td>Lactulose</td>
<td>Infant nutrition</td>
</tr>
<tr>
<td>Malic acid</td>
<td>Various</td>
</tr>
<tr>
<td>Oligosaccharides</td>
<td>Medical</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>Food gums</td>
</tr>
<tr>
<td>Single cell protein</td>
<td>Various</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Food fortification</td>
</tr>
</tbody>
</table>

Zadow 1991 Food Research Quarterly, 51, 99-106
Green plastics

- Polyhydroxyalkanoate (PHA) biopolymers
- Bio-compatible
- Compostable

Industrial applications:
- Packaging (high O₂ barrier)
- Paper coating
- Medical applications
- Vitamins, antibiotics
- Biofuels
Green plastics

- Carbon feed stock for various microbial species
- Substitute for polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET)
- GMO bacteria
- Competitive to petrochemical plastics (?)
- Downstream processing
Swedes spin silk from whey protein

- Or perhaps, like Rumpelstiltskin, we can spin whey into gold (or silk)
- Use whey protein nanostructures to form artificial silk
- Closely resembles the lightweight and elastic properties of silk.
- Uses include: biosensors or self-dissolving wound dressings.

Will We Make $1 Billion?

- No shortage of new ideas, processes and products
- How do we make money from them?
- Technology push vs market pull
- Story to tell
- Economics
- Clinical trials
- Clean label
Thank you – any questions