Persister cells – cells that keep on giving

Steve Flint
October 2017
Resistance and Persistance

• Resistance = populations of cells that survive antimicrobial treatment

• Persistence = a proportion of cells that survive antimicrobial treatment
Mechanism of bacterial persistence

Persistent cells
- Stable tolerant survivors (genotypic heterogeneity)
- Temporary tolerant survivors (phenotypic switching)

What is persistence?

- Persistence = long term occurrence of genetically indistinguishable strains in the same environment

- Months or Years?

- PFGE, MLST, WGS ??

- Conveyor belt? Same room? Same factory?

- Very broad description
Two current models of persistence

Persistence

Random process

Genotypic and phenotypic features

?
First Study
Persistent *L. monocytogenes* from a manufacturing plant

- Isolates taken from the manufacturing plant environment

- “Persistent” types based on frequent analysis of molecular fingerprinting types
Our Approach – focus on *Listeria monocytogenes*

- Genetic approach
 - IFR Norwich, UK
 - 48 strains

- Phenotypic approach
 - Wageningen University, The Netherlands
 - 8 persistent strains + 7 sporadic + 1 outbreak strain
Genotype Approach - WGS

• 10 persistent strains
 ➢ Isolated from food environments
 ➢ 4 persistent pulsotypes

• 32 sporadic strains
 ➢ Isolated from food processing environment

• 5 other
 ➢ Human isolates, outbreak isolates, mutant strain

Illumina, MiSeq, 250bp read length
Genotype Approach – From DNA to Data

DNA → Sequencing → De novo Assembly (SPAdes) → Visualization (Artemis and MAUVE) → Annotation (PROKKA) → Comparison:

- core / accessory genome (ROARY)
- SNP (Parsnp)
- FFP
Some differences associated with mobile genetic elements

Differences might be multifactorial or based on subtle differences in the core genome
Phenotype approach – 16 strains

Persistent isolates

Pulsotype 3814	15A04 (plant II)
	27A05 (plant I)
Pulsotype 5132	15G01 (mutant parent, plant I)
	16J10 (plant I)
Pulsotype 5588	32C06 (plant III)
	33H04 (plant III)
Pulsotype 6502	15A07 (plant II)
	31H06 (plant II)

Sporadic + outbreak isolate

| 15B09 (plant I) |
| 15D07 (plant I) |
| 16J08 (plant I) |
| 19B07 (plant I) |
| 15G10 (plant II) |
| 17A02 (plant II) |
| 16H02 (plant IV) |
| 16A01 food outbreak |

Environmental isolates
Phenotype Approach - Tests

- Biofilm formation
 - CV-staining
 - Plating
- Heat treatment
 - Plating
 - Flow cytometry
- Motility
- Growth
- Survival on dry surface
 - Planktonic cells
 - Biofilm cells
Phenotype Approach – Biofilm formation

Conditions tested:
20°C (24, 48 h)
30°C (24, 48 h)
Medium: BHI

Crystal violet staining
- No indication about viable cells
- Stains any organic matter

Cell enumeration by plating
- Detects viable cells
- Gives an indication about living cells in the biofilm
Phenotype Approach – Biofilm formation at 20°C

Minimal biofilm formation
Cell counts between 3-6 log CFU/well
No specific persistent behaviour
Phenotype Approach – Biofilm Formation at 30°C

5 persistent strains and 1 sporadic strain show higher cell count and biofilm mass after 24 hours

6 persistent strains and 1 sporadic strain show higher cell count and biofilm mass after 48 hours
Phenotype Approach – Heat resistance

- Heat treatment at 58°C for 5min
 - 5 min recovery
 - 2 h recovery
- Aim: To identify ability of heat treated strains to recover
- Plating and Flow cytometry
Phenotype Approach
- Principle of Flow Cytometry

Flow Cytometry

Sheath fluid → Sample (stained cells in suspension) → Nozzle

Hydrodynamic Focusing
Cells pass through in "single file"

Laser light source → Fluorescence emitted from stained cells detected → Forward and side scattered light from all cells detected
Phenotype Approach
- Flow Cytometry Output

Experiment Name: Bcereus standard PI
Specimen Name: Coop Jessika_20150624
Tube Name: Listeria 15G01_0n_PBS_dead_PI
Record Date: Jun 25, 2015 11:12:09 AM
$OP: Administrator
GUID: 1f4aa17d-e608-4b42-8945-e318f4ba6b5b

<table>
<thead>
<tr>
<th>Population</th>
<th>#Events</th>
<th>%Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cells</td>
<td>50,000</td>
<td>100.0</td>
</tr>
<tr>
<td>Dead listeria</td>
<td>49,650</td>
<td>99.3</td>
</tr>
<tr>
<td>"Damaged"</td>
<td>292</td>
<td>0.6</td>
</tr>
<tr>
<td>Alive</td>
<td>52</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Phenotype Approach

Results

Plating

Surviving cells [log %]

Living cells [log %]

Total (persistent/sporadic)

3 (2/1)

7 (4/3)

6 (2/4)

Flow cytometer

6 (4/2)

7 (4/3)

3 (0/3)
Results

- Majority of the strains had significantly lower CFU/ml after heat treatment (ANOVA, $p \leq 0.001$), but no significant difference between the mean values of the difference at 5min and 2h (ANOVA, $p=0.232$)

- 2 factor ANOVA with replication

<table>
<thead>
<tr>
<th></th>
<th>persistent</th>
<th>sporadic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average t0</td>
<td>9.09465053</td>
<td>8.92693031</td>
</tr>
<tr>
<td>variance</td>
<td>0.01680262</td>
<td>0.00252948</td>
</tr>
<tr>
<td>Average t5min</td>
<td>8.10540189</td>
<td>7.65350223</td>
</tr>
<tr>
<td>variance</td>
<td>0.00071655</td>
<td>0.01332252</td>
</tr>
<tr>
<td>Average t2h</td>
<td>8.01439826</td>
<td>7.61914735</td>
</tr>
<tr>
<td>variance</td>
<td>0.00090569</td>
<td>0.00023951</td>
</tr>
</tbody>
</table>

Persistent/sporadic $p \leq 0.001$
Interaction $p=0.081$
Survival on dry surfaces

Biofilm cells

Overnight culture
TSBYE
37°C

Planktonic cells

24 hours
BHI
25°C

48 hours
BHI
30°C

Incubation at 25°C

Survival on Day 0, 1, 2, 5, 7 and 14
Results

- Cell numbers decreased sharply on Day 1 compared to initial concentration
 - Planktonic cells reduction of 1.93 log CFU/well
 - Biofilm cells reduction of 1.83 log CFU/well
- Survival after 14d
 - Planktonic cells reduction ranging between 3.01 – 5.29 log CFU/well
 - Biofilm cells reduction ranging between 2.57 – 5.05 log CFU/well
 - Sporadic planktonic cultures highest reduction of 3.76 – 5.29 log CFU/well
 - Persistent biofilm cells lowest reduction ranging from 2.57 – 4.12 log CFU/well
Conclusions

• Unbalanced two factor ANOVA (Isolation and persistence/non-persistence)
 • Persistent strains form more biofilm than sporadic strains at 30°C after 48h incubation (CV 0.2 vs 0.12, p=0.039; cell numbers 6.62 log cfu/ml vs 6.30, p=0.028)
 • Initial percentage of cells alive (flow cytometry average 97% vs 96%, p=0.06)
 • Survival at Day 2 for biofilm cells (4.06 log cfu/well vs 3.27, p=0.074)
• No growth defects for all strains
• No genetic traits identified
• Representatives of each pulsotype behave similar
Principal component analysis (PCA)
Second study
Persister cells following Nisin treatment

• Selecting cells that survive increasing levels of nisin treatment
Gaps and limits in current studies of persister formation on food safety relevance:

• Inadequate number persisters during sampling in food environments
 Viable but Non-culturable cells – hard to detect

• Surface adhering ability (biofilm forming ability) Can not explain the persistence

*Sanitizers: quaternary ammonium compounds, chlorine dioxide, peracetic acid

• The persistence following treatment with natural antimicrobials like bacteriocins has not been determined for *L. monocytogenes*;

<table>
<thead>
<tr>
<th>Product</th>
<th>Benefit</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nisaplin</td>
<td>Anti-gram-positive</td>
<td>All types of foods: dairy, culinary, meat, bakery products and beverages</td>
</tr>
</tbody>
</table>
Research interests:

- What are the conditions that favour the *L. monocytogenes* persister formation in **planktonic form**?
- What are the conditions that favour the *L. monocytogenes* persister formation in a **biofilm matrix**?

- What **mechanisms are involved** in *L. monocytogenes* persisting?

under high concentrations of nisin

Precondition: Be able to collect adequate persister cells under nisin treatment

Firsthand Task:
Whether persister cells can be isolated following nisin treatment?
Biofilm screening of *L. monocytogenes* from foods and food related environments (48 isolates)

A1-20: AsureQuality Limited, NZ;
R1-R9: Plant & Food Research, NZ;
M1-M7: Albany campus of Massey university;
H1-12: Hills Lab (an independent NZ analytical testing centre).

microtiter plate assay

The biofilm formation index (BFI):

\[\text{BFI} = \frac{(\text{AB} - \text{CW})}{G} \]

AB: attached bacteria biofilm
CW: blank wells
G: optical density of cells growth in suspended culture.

(strain M5 is the NCTC 7973 strain isolated from Guinea pig mesenteric lymph node)

- **strong** (≥1.10),
- **moderate** (0.70–1.09),
- **weak** (0.35–0.69)
Identify the presence of *L. monocytogenes* persister cells by dose-dependent killing of planktonic cells.

100µl blank/nisin
+ 900µl overnight culture

![Graph](image)

Figure 3a. Concentration-dependent killing of *L. monocytogenes* A1 planktonic cells treated with nisin at concentrations of 0-75µg/ml at 30°C for 24 h.

- Tolerant to prolonged treatment with high dosed of bactericidal nisin;
- Genetically identical to susceptible bacteria;

![Graph](image)

Figure 3b. Six persister isolates from the A1 strain (AP1-AP6) which survived 24hrs treatment with 75µg/ml nisin in TSB were re-exposed to 75µg/ml nisin at 30°C for 24hrs.
What if we **resuspended** overnight culture cells in to new medium?
and
How would the resuspended cells respond to nisin treatment?

Resuspend in TSB/

Diluted TSB

+Nisin treatments

Incubation 24hrs
The effect of nutrients on the production of *L. monocytogenes* persister cells

The re-suspension cells showed increased persistence;

Some components within the TSB medium could be a key mediator for *L. monocytogenes* persister formation

Figure 4a Dose-dependent killing of re-suspended cells of the A1 strain. The blue bars represent an

Nutrient limitation?
Whether limited nutrient condition favours persister formation?

1. Resuspend in TSB/Diluted TSB
2. Incubation first 24hrs
3. +Nisin treatments
4. Incubation second 24hrs
5. time 0
6. time 24
4 The effect of nutrients on the production of *L. monocytogenes* persister cells

Delayed Nisin treatment

- **Resuspend in TSB/ Diluted TSB**
- **Incubation first 24hrs**
- **Incubation second 24hrs**
- **time 0**
- **time 24**

Immediate Nisin treatment

- **Resuspend in TSB/ Diluted TSB**
- **+Nisin treatments**
- **Incubation 24hrs**

Dormant state
- Slow or no growth of the cells
- A slow metabolism

Figure 4a: Dose-dependent killing of re-suspended cells of the A1 strain. The blue bars represent an
What about persisters in biofilm following with nisin treatment?
Optimizing methods for obtaining *L. monocytogenes*persisters in a biofilm model

Matrix polymers

blank/ nisin treatment + formed biofilm on stainless steel coupon

Biofilm showed increased persistence

Genetically identical to susceptible bacteria;

Possiblity of increased persistence linking with the extracellular polymers structure of biofilm?
Hypotheses

- *L. monocytogenes* persister formation is dependent on the cell metabolic rate in planktonic form (nutrient factors, cellular factors)

- *L. monocytogenes* persister formation is influenced by specific features in a biofilm community (e.g. structure of the extracellular polymers)

- *L. monocytogenes* persister formation is due to the expression of specific genes in both the planktonic and biofilm communities.

Related mechanisms involved in persister formation

- Dormancy;
- Cell – cell communication (Quorum sensing);
- Toxin/antitoxin system;
- Efflux pump

Clinical relevance studies
Gene expression in persister cells

• Increased or decreased expression of genes is seen in presister cells

• This helps our understanding of how bacteria cope when exposed to stress (preservatives or sanitisers)

• How can we use this to avoid persister populations?
Select gene expression changes

• Stress response

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Function</th>
<th>Increase/decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmo1580</td>
<td>Universal stress protein</td>
<td>+ 2.89</td>
</tr>
<tr>
<td>lmo2004</td>
<td>Transcription regulator</td>
<td>- 4.91</td>
</tr>
</tbody>
</table>
Select gene expression changes

• Cell wall synthesis

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Function</th>
<th>Increase/decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmo0129</td>
<td>amidase</td>
<td>+4.09</td>
</tr>
<tr>
<td>lmo2714</td>
<td>Peptidoglycan bound protein</td>
<td>-3.44</td>
</tr>
</tbody>
</table>
Select gene expression changes

- DNA repair and damage

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Function</th>
<th>Increase/decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmo1975</td>
<td>DNA polymerase IV</td>
<td>-4.03</td>
</tr>
</tbody>
</table>

- No genes upregulated
Select gene expression changes

- ATP binding /transport system

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Function</th>
<th>Increase/decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmo1636</td>
<td>ATP-binding protein</td>
<td>+3.58</td>
</tr>
<tr>
<td>lmo1730</td>
<td>Sugar transport</td>
<td>-3.49</td>
</tr>
</tbody>
</table>
Select gene expression changes

• Bacteria change their gene expression to cope with preservatives/sanitisers

• Suggests going into “lock down” or “sleep” until conditions improve

• A natural temporary protective mechanism

• Does this “evolve” into resistance?
Antimicrobial treatments

Persistence

Resistance

Food contamination

Understanding the mechanism of persister formation
What does this mean for us in the dairy industry

• Vary sanitisers used
• **Use heat treatment where possible**
• Ensure optimum strength of sanitisers/preservatives
• **Use multiple antimicrobial treatments**
Thank you!

Never underestimate the power of persistence.
Acknowledgements

- Jessika Norwak (Massey PhD student)
- Shuyan Wu (Massey PhD student)
- Tjakko Abee and Marcel Tempelaars, (WUR, The Netherlands)
- Arnoud van Vliet, (IFR, UK)
- Cristina Cruz (P & F research)
 Graham Fletcher (P & F research)
- Jon Palmer (Massey)