CHEESE

IT’S OK TO RECOMMEND CHEESE: HERE’S WHY
Opinions differ on the health effects of dairy foods, including cheese. Some people may feel the need to moderate cheese consumption due to its saturated fat, sodium and energy content, and concerns around heart health, blood pressure and the waistline. However, the 2013 Australian Dietary Guidelines classifies all cheese as a Five Food Group food rather than a discretionary food.

Health professionals play an important role in educating consumers about good nutrition and providing accurate, evidence-based information.

The purpose of this paper is to provide a summary of the latest science on cheese consumption and conditions such as cardiovascular disease (CVD), blood pressure, type 2 diabetes, metabolic syndrome and obesity.

Dairy Australia is the national services body for the dairy industry. This report, prepared by health professionals at Dairy Australia, aims to bring together the most up-to-date and emerging research around the health benefits of cheese. It draws from the latest evidence from around the globe to help health professionals and policymakers to understand the unique health benefits of this ancient fermented dairy food, and to encourage all Australians to enjoy cheese varieties as part of a balanced diet.
How much cheese do Australians eat?

Almost one third of Australians eat cheese each day and some people believe that Australians are eating more than enough cheese. However, according to the 2011–2012 National Nutrition and Physical Activity Survey (NNPAS), the mean daily intake of cheese was only 12g – less than a third of the Australian Dietary Guidelines recommended serving size (40g).1

Hard cheese was the most consumed type of cheese, accounting for 67% of consumption, followed by processed cheese (10%) and cream or cottage cheese (10%). Surface ripened cheese (e.g. camembert or brie) made up only 3% of the total cheese consumed.2

Most cheese was consumed in sandwiches, rolls and on toast (41%). A further 28% was eaten in mixed dishes, 18% was consumed alone and 14% was consumed on pizza.1

What nutrients does cheese provide?

Cheese intake accounted for 7.2% of saturated fat and 3.9% of sodium intake, however it was the second largest provider of dietary calcium, contributing 9.6%.1

Other nutrients provided by cheese included protein vitamin A, riboflavin, niacin, vitamin B12, vitamin K2, iodine, phosphorus, selenium and zinc.
Insights on the impacts of cheese consumption on health

Evidence from prospective cohort studies

In recent years a number of papers have provided new insights on the impacts of cheese consumption on health. The following is a summary of systematic reviews and meta-analyses from prospective cohort studies.

Cardiovascular disease (CVD)

A meta-analysis of prospective studies by Chen et al. included 15 prospective cohort studies, most with a duration of over 10 years.3

- There was an inverse association between cheese consumption and risk of CVD.
- Compared to lower cheese consumption, higher intakes were associated with a 10% lower risk of CVD.
- These relationships were most pronounced at intakes of approximately 40 g/d cheese.

Guo et al. published a meta-analysis of 29 cohort studies (this included 938,465 participants and 25,416 cases of CVD).4

- The authors observed inverse associations of total fermented dairy consumption with risk of CVD.
- Every 10 g/d of cheese consumption reduced CVD risk by approximately 2%.

Coronary heart disease (CHD)

Drouin-Chartier et al. published a systematic review and meta-analyses of prospective cohort studies on the associations between dairy food consumption and the risk of cardiovascular-related clinical outcomes.5

- This study concluded there is no evidence that the consumption of any form of dairy is detrimentally associated with any cardiovascular-related clinical outcome.
- Consumption of cheese was not associated with CHD.

A systematic review and meta-analysis by Alexander et al. included data from five studies (194,911 individuals were followed for 10–23 years).6

- Consumption of cheese was inversely associated with risk of CHD.
- Cheese intake of at least 52.6 g/d was associated with a 14% lower risk of CHD.

Stroke

A meta-analysis of 11 prospective cohort studies, published by Gholami et al. in 2017, evaluated the association of the consumption of dairy products on the risk of stroke.7

- Cheese consumption was associated with a 7% reduced risk of stroke.

A systematic review and meta-analysis by Goede et al. included data from seven studies (272,368 individuals were followed for 10–17 years; there were 11,226 cases of stroke).8

- Consumption of cheese was marginally inversely associated with risk of stroke. This relationship was most pronounced at intakes above 25 g/d.
- These results are also consistent with the 2016 systematic review and meta-analysis by Alexander et al.8

Elevated blood pressure

Soedamah-Muthu et al. published a systematic review and meta-analysis in 2012. This included data from eight studies (51,007 individuals were followed for 5–10 years; there were 15,066 cases of hypertension).9

- Results indicated no association between cheese consumption and hypertension.

Type 2 diabetes (T2D)

In a recent meta-analysis of prospective cohort studies, Alvarez Bueno et al. looked at dairy consumption and the relationship with T2D incidence.10 This study examined data from 12 systematic reviews and meta-analyses, four of which looked at cheese specifically.

- There was a moderate association between cheese consumption and reduced risk of T2D diabetes risk in adults.

A previous study by Gijsbers et al. examined the relationship between dairy consumption and type 2 diabetes, using data from 12 studies (369,697 individuals were followed for 4–30 years; there were 32,936 cases of diabetes).11

- There was no association between cheese consumption and type 2 diabetes.

Mortality

A 2019 overview of systematic review and meta-analyses by Cavero-Redondo et al. looked at dairy consumption and risk of mortality.12

- This included two studies that looked at cheese, one by Tong et al. who examined the long-term association of cheese consumption with all-cause mortality.13 This included data from nine prospective studies (177,651 individuals were followed for 5–15 years; there were 21,365 cases of mortality).
- There was no significant association between cheese consumption and all-cause mortality.

Body weight – adults

The pooled analysis of prospective cohort studies with the longest follow up was conducted by Smith et al. in 2015.14 Data on cheese consumption and body weight was collected every four years (120,784 individuals were followed for 16–24 years).

- There was no association between cheese consumption and weight gain.
- An extra serve of cheese consumed in place of refined carbohydrates was associated with long term weight loss of around 85 g per year.

Obesity risk – children

In a systematic review and meta-analysis, Lu et al. looked at dairy and the risk of childhood obesity (not just cheese).15

- Data from four prospective cohort studies were pooled (22,505 children) with results showing children in the highest dairy intake group were 38% less likely to be overweight or obese.
- Risk of childhood overweight/obesity was 13% lower with each serving/d increment in dairy intake.
- One prospective cohort study considered cheese and showed no association between cheese consumption and risk of overweight/obesity.
Long-term studies have also provided some insights into cheese and health. For example, data from the European Investigation into Cancer and Nutrition (EPIC)-Norfolk study on 15,612 men and women (aged 40–78 y) followed individuals on for an average of 3.7 years. Studies have shown:

- A lower risk of ischaemic stroke with higher consumption of dairy foods, including cheese (per 30 g/day).
- An increase in consumption of fermented dairy products, including low-fat cheese was associated with a lower increase in body weight and body mass index (BMI).16
- No association with dairy food consumption (including cheese) on mortality.17

Evidence from randomised controlled trials

While evidence from observational research is informative, it cannot establish cause and effect. A number of randomised controlled trials (RCTs) have provided additional insights into cheese and health.

- A systematic reviews and meta-analysis by Goede et al. analysed the results of five different studies with a mean cheese intake of between three and five servings/day, demonstrating that cheese has different effects on blood lipids to what is usually predicted.18
- Additional RCTs investigating the effects of cheese on blood lipids have been published.19-22 They consistently indicate that high cheese intake (60–120g/d) does not cause detrimental changes in blood lipid concentrations, even in people with risk factors for CVD.
 - Three of these lasted between five and 12 weeks and monitored blood pressure and body weight. Results showed eating large quantities of cheese for one to three months did not adversely impact blood pressure, body weight or waist circumference.
 - In one of these studies, consuming 60g/d Camembert cheese compared to 250g regular-fat yoghurt did not modify lipid levels or blood pressure over 3 weeks.22
 - A study by Brassard et al. showed consuming butter induces a significantly greater increase in LDL cholesterol compared with cheese.23
- In another study, an amended DASH diet that included regular-fat dairy food has been shown to be as effective for lowering blood pressure as one with reduced-fat dairy.24
- Alba et al. found that eating four serves of cheese for eight days – in the context of low and high sodium diets – protects against microvascular dysfunction. In this study, participants consumed a variety of different cheeses including Cheddar, Swiss, parmesan, mozzarella and provolone.25

- A recent study indicated when participants with the metabolic syndrome followed a low-carbohydrate, high-fat diet that included cheese (200 g/day; five servings) of Cheddar or Gouda cheese, metabolic health was improved in more than half of participants, independent of weight loss.26

Perceived barriers to cheese consumption

About two thirds (21.6g/100g serve) of the fat in cheese is composed of saturated fatty acids so concerns that consumption might be linked with negative health effects are understandable.27 Excess consumption of saturated fat has traditionally been linked with a rise in LDL cholesterol levels and this explains why worldwide, national nutrition guidelines often advise the consumption of reduced-fat dairy over regular-fat dairy.

Sodium and heart health

Coronary heart disease is a major cause of death in Australia and consumers are often advised to limit cheese consumption due to concerns about its sodium content.28 The 2011–2012 Australian Health Survey revealed that only 4% of the total sodium consumed in the Australian diet comes from cheese (the major source being cereal-based products and dishes, followed by meat and poultry).1 Cheese also supplies significant amounts of calcium (9.6%), as well as magnesium and potassium – minerals known to reduce blood pressure.29
Salt plays an important role in the cheese making process, improving flavour, inhibiting growth of undesirable microorganisms and impacting on texture, stability and ripening. Even small reductions in salt can result in poor quality cheese and noticeable off flavours.\(^\text{30}\)

Since cheese consumption is not associated with risk of cardiometabolic disease, its consumption should not be discouraged due to concern about its sodium content.\(^\text{31}\)

Saturated fat: not all fats are equal

There is now substantial scientific evidence indicating that, unlike saturated fat from other animal products, consumption of saturated fat from dairy foods such as cheese is not associated with cardiovascular risk.\(^\text{32-34}\)

Similarly, a meta-analysis by Imamura et al. revealed that participants with the highest levels of dairy-related fatty acids in their blood had a 30% lower risk of developing type 2 diabetes.\(^\text{35}\) It is important to note that dairy fat has the most complex profile of all the fats, containing more than 400 different fatty acids (e.g. short, medium and long-chained fatty acids).\(^\text{36}\)

Just as not all types of carbohydrate have the same impact on health, not all types of saturated fat are associated with the same health effects.

Regular or reduced-fat cheese?

A randomised controlled trial looked at the effect of regular versus reduced-fat cheese on cholesterol levels and metabolic syndrome risk factors.\(^\text{37}\) Subjects recruited for this study were required to have a large waist circumference and one or more metabolic syndrome risk factors. Subjects were randomised to one of three 12-week intervention diets; regular-fat or reduced-fat cheese (approximately 80g per day), or a non-cheese, carbohydrate control (90g of bread and jam). Subjects were asked to live as they normally would, but were asked to replace normal foods in their diet with the test foods. They found no differences in health outcomes between the three diets, as shown in Figure 1.

Figure 1: A randomised controlled trial indicates high daily consumption of regular-fat cheese does not negatively affect health outcomes compared to consumption of reduced-fat cheese or a carbohydrate control in an adult population at risk of chronic disease.

<table>
<thead>
<tr>
<th>139 adults at risk of chronic disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-fat cheese</td>
</tr>
<tr>
<td>Reduced-fat cheese</td>
</tr>
<tr>
<td>CHO control</td>
</tr>
</tbody>
</table>

12 week intervention (64-112g cheese/d)

<table>
<thead>
<tr>
<th>LDL cholesterol</th>
<th>Insulin</th>
<th>HOMA-IR</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-fat cheese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced-fat cheese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHO control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HDL cholesterol</th>
<th>Glucose</th>
<th>CRP</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-fat cheese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced-fat cheese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHO control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No differences according to cheese type

Foods versus nutrients

When nutrients such as saturated fat and sodium are consumed as part of a food, together with other essential nutrients and bioactive components, they work synergistically to affect health rather than how you would expect them to act as nutrients on their own.

An example of this is cheese, which is composed of a highly complex matrix of nutrients.\(^\text{38}\) Cheese is recognised as a Five Food Group food in the Australian Dietary Guidelines which make recommendations based on whole foods, as opposed to single nutrients.\(^\text{38}\)
POSSIBLE REASONS WHY CHEESE IS ATTRIBUTING TO HEALTH BENEFITS

A complex nutrient matrix
Cheese is composed of a complex matrix of nutrients and other bioactive components that work together to positively impact on health.

Fat excretion
Not all of the fat consumed in cheese is absorbed. This may be due to the presence of calcium, which increases fecal fat excretion.

Displacing less healthy foods with a protein food
When people eat cheese (a Five Food Group food) they are likely to have less appetite for unhealthy, discretionary foods. The protein in cheese may also increase satiety.

Fermentation and ripening processes
Fermented and ripened dairy foods (such as cheese) have been found to have a favourable effect on biomarkers associated with inflammation, oxidative stress or atherogenesis in overweight and obese adults.

Gut microbiota
Cheese may be associated with positive health effects by modifying the gut microbiota.

REFERENCES

Continued on back cover...

27 Food Standards Australia New Zealand 2019. Australian Food Composition Database, Canberra.

